1.5°C SCIENCE BASED TARGET SETTING IN THE CEMENT SECTOR
PUBLIC CONSULTATION WEBINAR

16 March 2022
Karl Downey, Senior Technical Manager
This is a **zoom webinar**. Your camera and microphone are automatically muted.

Participants can send questions via the Q&A button.

Slides from this meeting will be shared after this call.

Please note that this webinar will be recorded for the benefit of those who cannot attend.
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. SBTs and the Net-Zero Standard - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
TODAY’S WEBINAR TEAM

KARL DOWNEY
Senior Technical Manager and Team Lead Buildings/Cement/Steel SBTi

MIKE DANIELSON
Senior Associate SBTi

EMMA WATSON
Senior Net-Zero Manager SBTi

ANDRES CHANG
Research Manager SBTi

AAMIR KHAN
Project Officer SBTi

PAULINA MORENO
Communications Manager SBTi

ANTONIO CARRILLO
Head of Climate and Energy, Group Sustainability Holcim Ltd.

Cement Public consultation webinar - 16 March 2022
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. SBTs and the Net-Zero Standard - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
The Science Based Targets initiative (SBTi) is a global body enabling businesses and financial institutions to set ambitious emissions reductions targets in line with the latest climate science.
To learn more about the progress of the initiative, consult the SBTi Progress Report.
Companies with science-based targets are delivering emissions reductions at scale.

- Companies with science-based targets reduced emissions by **25%** between 2015-2020, compared with an increase of **3.4%** in global emissions from energy and industry.

- The typical company with SBTs reduced direct (scope 1 and 2) emissions at a linear annual rate of **6.4%**. This exceeds the rate required by the SBTi criteria to meet 1.5°C scenarios (4.2%).

Source: [SBTi Progress Report 2020](https://www.sbtinitiative.org/report/).
THE SBTi CEMENT PROJECT
Cement companies can already set well-below 2°C-aligned targets using the SBTi tools.

SBTi has launched this project to provide resources for companies to set 1.5°C-aligned targets:
 - 1.5°C pathway
 - Detailed target-setting rules
 - Near and long term targets

SBTi would like to thank Holcim for funding of the cement project.
TIMELINE OF SBTi CEMENT PROJECT

Can be viewed in real time on the project [webpage](#).

<table>
<thead>
<tr>
<th>Event</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convening the EAG and project kick-off</td>
<td>Sep-Oct</td>
</tr>
<tr>
<td>Deriving 1.5°C decarbonization pathway</td>
<td>Nov-Dec</td>
</tr>
<tr>
<td>Creating and testing target-setting tool</td>
<td>Jan-Mar</td>
</tr>
<tr>
<td>Developing guidance documents and consultation period</td>
<td>Apr-Jun</td>
</tr>
<tr>
<td>SBTi review and approval</td>
<td>Jul-Aug</td>
</tr>
<tr>
<td>Incorporation of new resources into SBTi Target Validation Protocol</td>
<td>Sep</td>
</tr>
<tr>
<td>Publication of final deliverables</td>
<td></td>
</tr>
<tr>
<td>Socialization of resources developed</td>
<td></td>
</tr>
</tbody>
</table>

SBTi’s 1.5°C ambition update in effect from 15 July 2022
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Organization Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellona</td>
<td>Holcim Ltd.</td>
</tr>
<tr>
<td>Cementos Argos</td>
<td>Institute for European Environmental Policy (IEEP)</td>
</tr>
<tr>
<td>Cemex</td>
<td>Potsdam Institute for Climate Impact Research</td>
</tr>
<tr>
<td>CRH</td>
<td>RMI</td>
</tr>
<tr>
<td>Dangote Cement Plc</td>
<td>Siam Cement Public Company Limited (SCG)</td>
</tr>
<tr>
<td>European Climate Foundation</td>
<td>UltraTech Cement Limited</td>
</tr>
<tr>
<td>Global Cement & Concrete Association (GCCA)</td>
<td>VDZ/ECRA</td>
</tr>
<tr>
<td>Grupo Cementos Chihuahua</td>
<td>Votorantim Cimentos</td>
</tr>
<tr>
<td>HeidelbergCement</td>
<td>WWF</td>
</tr>
</tbody>
</table>
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. **SBTs and the Net-Zero Standard** - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
WHAT ARE SCIENCE BASED TARGETS?
In 2015, 195 countries agreed to:

- **Limit global temperature increase** to well below 2°C and pursue efforts to limit it to 1.5°C
- Increase the world’s ability to adapt to the adverse impacts of climate change and foster more **carbon efficient development**
- Make finance flows consistent with a **low-emissions and climate-resilient** future
A GHG budget is an estimate of the cumulative CO2, methane, and other Kyoto gases that can be emitted over a period of time, while limiting temperature rise to a specific amount. Budget calculations are highly sensitive to assumptions regarding climate sensitivity and likelihood of temperature outcome, despite the apparent simplicity.
Homogeneous sectors:
- Power
- Cement
- Iron & Steel
- Aluminium
- Pulp & Paper
- Transport (some sectors)
- Buildings

Heterogeneous sectors:
- Other industry

Note: an absolute contraction pathway for 1.5°C has already been derived by the SBTi and requires a minimum 4.2% linear annual reduction or a 42% reduction over 2020-2030, whichever is higher.
Since the release of the IPCC Special Report on 1.5°C, there has been rapid growth in the adoption of net-zero pledges.

Net-zero coverage

GLOBAL NET ZERO COVERAGE

- Emissions: 88%
- GDP (PPP): 90%
- Population: 85%

Country-level coverage only. We do not include sub-national net zero targets in countries without a target.

1 in 3 of the largest listed companies in G20 countries now have net-zero targets, up from 1 in 5 last year

Source: ECIU, November, 2021

Growth in UNFCCC Race to Zero campaign

Source: Race to Zero, Sep, 2021
Net-zero targets differ across four key dimensions:

Dimension	**Options (non-exhaustive)**
Scope of climate impact | CO₂ | All GHGs | GHG & other
Scope of activities | Operations | Value chain | Products | Others
Mitigation strategy | Emission reduction | Negative emissions | Carbon finance | Avoided emissions
Timeframe | Short-term | Long-term

Corporate net-zero targets can play a critical role in addressing the climate emergency, but the lack of a robust benchmark has triggered scepticism around net-zero as a concept.

Common criticisms include:

- **Incomplete boundary:** Selective inclusion of emission sources in corporate net-zero targets.
- **Delayed action:** Lack of interim milestones for long-term targets.
- **Mitigation deterrence:** Focus on offsetting instead of reducing emissions.
- **Poor accountability:** Lack of scrutiny and accountability on voluntary commitments.
FOUR KEY ELEMENTS MAKE UP THE NET-ZERO STANDARD FRAMEWORK

1. **To set near-term science-based targets:**
 - 5-10 year emission reduction targets in line with 1.5°C pathways*

2. **To set long-term science-based targets:**
 - Target to reduce emissions to a residual level in line with 1.5°C scenarios by no later than 2050

3. **Beyond value chain mitigation:**
 - In the transition to net-zero, companies should take action to mitigate emissions beyond their value chains. For example, purchasing high-quality, jurisdictional REDD+ credits or investing in direct air capture (DAC) and geologic storage

4. **Neutralization of residual emissions:**
 - GHGs released into the atmosphere when the company has achieved their long-term SBT must be counterbalanced through the permanent removal and storage of carbon from the atmosphere

*Note: it is still possible to set a near-term SBT only, without a long-term target

Cement Public consultation webinar - 16 March 2022
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. SBTs and the Net-Zero Standard - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
1.5°C EMISSIONS SCENARIOS
CROSS-SECTOR PATHWAY

Our cross-sector pathway research aims to increase the consistency and rigor of business climate action

- Advance a **common understanding** of what it takes to align with 1.5°C via near-term and long-term climate targets.

- Ensure that, in aggregate, sector pathways used to calculate targets **do not exceed the cumulative emissions budgets**.

- Chart a clear direction for **new sector-based research**, roadmaps, and collaborations that fulfill a specific ambition range.
HOW ARE 1.5°C PATHWAYS DETERMINED BY THE SBTi? (1/2)

Pathways used by the SBTi aim to **steer voluntary climate action** and contribute to achieving the **1.5°C objective** of the Paris Agreement and the Sustainable Development Goals (SDGs), reaching net-zero CO₂ emissions at the global level by **2050** and net-zero greenhouse gas (GHG) emissions in 2050 or later.
In aggregate, these pathways:

- Stay within the remaining carbon budget for a 50% likelihood of limiting warming to 1.5°C (500 GT CO₂);
- Reduce energy and industrial process CO₂ and CH₄ emissions by an amount roughly consistent with the IEA’s Net Zero Emissions scenario;
- Reduce forestry, land-use and agriculture (FLAG) sector GHG emissions by an amount consistent with the detailed land-sector roadmap in Roe et al. (2019);
- In aggregate, reach net-zero CO₂ at the global level by 2050, assuming at least low/medium CO₂ removal (1-4 GT CO₂/year), and net-zero GHG emissions in 2050 or later, depending on CO₂ removal levels and different mitigation choices across pathways.

Sector-specific pathways are typically developed under the SBTi’s sector development process, which fosters stakeholder collaboration and innovation through convening an advisory group and inviting feedback through public consultations:

- Because these projects operate with different advisory groups and timelines, sector-specific CO₂ budget ranges have been established in the *Pathways to Net-Zero* report to ensure that an aggregate CO₂ budget is not exceeded.
Step 1. Disaggregate the remaining CO₂ budget into emissions corridors for energy and industrial process CO₂ emissions (Figure 2b), deforestation and land-use change CO₂ emissions, and CO₂ removal based on a comparative assessment of top-down mitigation scenarios and sectoral studies, and principled judgements.

In our pathways, the remaining CO₂ budget for energy and industrial process CO₂ emissions aligned with 1.5C is 450-480 GT CO₂

Note: Non-CO₂ GHG emissions are added in a separate step.
Step 2. NZE and Roe et al. (2019) are used to derive carbon budget allocation across sectors for the maximum remaining budget of 500 GT CO₂. In other words, these studies define the upper bound of sectoral carbon budgets that must not be exceeded by target-setting pathways.

- Under the FLAG sector project, sector-specific pathways meeting this condition are being developed based on a combination of Roe et al. (2019) and updated commodity-specific pathways from Smith et al. (2016), ‘Science based GHG Emissions targets for agriculture and forestry commodities.’

- For the energy supply, transport, industry, and buildings sectors, sector-specific pathways are being developed under projects with different advisory groups and timelines. For these sectors, we have estimated a lower bound on sectoral carbon budgets based on a review of relevant studies, in addition to defining an upper bound from NZE.

<table>
<thead>
<tr>
<th>Sector</th>
<th>2019 CO₂ emissions (GT CO₂)</th>
<th>2020-2050 CO₂ budget used by the SBTi to assess 1.5°C pathways (GT CO₂)</th>
<th>Share of 2020-2050 energy and industrial processes CO₂ budget relative to sector’s share in 2019 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy supply</td>
<td>15.3</td>
<td>115-146</td>
<td>59-75</td>
</tr>
<tr>
<td>Electricity and heat</td>
<td>13.8</td>
<td>102-133</td>
<td>58-76</td>
</tr>
<tr>
<td>Transport</td>
<td>8.3</td>
<td>100-129</td>
<td>95-123</td>
</tr>
<tr>
<td>Road transport</td>
<td>6.1</td>
<td>73-91</td>
<td>92-117</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>0.9</td>
<td>12-16</td>
<td>101-143</td>
</tr>
<tr>
<td>Aviation</td>
<td>1.0</td>
<td>15-19</td>
<td>110-147</td>
</tr>
<tr>
<td>Industry</td>
<td>8.9</td>
<td>134-153</td>
<td>116-135</td>
</tr>
<tr>
<td>Iron and steel</td>
<td>2.5</td>
<td>20-40</td>
<td>62-126</td>
</tr>
<tr>
<td>Cement</td>
<td>2.5</td>
<td>35-41</td>
<td>109-131</td>
</tr>
<tr>
<td>Chemicals</td>
<td>1.3</td>
<td>13-26</td>
<td>73-153</td>
</tr>
<tr>
<td>Buildings</td>
<td>3.0</td>
<td>30-41</td>
<td>75-107</td>
</tr>
<tr>
<td>Residential buildings</td>
<td>2.0</td>
<td>20-30</td>
<td>74-117</td>
</tr>
<tr>
<td>Service buildings</td>
<td>1.0</td>
<td>10-11</td>
<td>76-89</td>
</tr>
<tr>
<td>Cross-sector total (CO₂ only)</td>
<td>35.5</td>
<td>450-480</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. 2020-2050 CO₂ emissions budgets used by the SBTi for the energy supply, transportation, industry, and buildings sectors. Budgets cover direct emissions only (i.e., scope 1) but when setting SBTis, companies must set targets that also cover indirect emissions (i.e., scopes 2 and 3). Due to expected mitigation trade-offs across sectors, the lower bound of “Total” CO₂ emissions is higher than aggregating the lower bound of all sectors. 2019 CO₂ emissions data are sourced from IEA (2021). Sector-specific pathways in-line with the budget ranges in this table do not automatically qualify for use by the SBTi.
About the Scientific Advisory Group

- 15 experts – including several IPCC lead authors and other pioneering academics
- Diverse expertise in climate science, energy system modeling, land sector mitigation, and regional pathways
- Meets quarterly, actively involved with shaping our approaches
CHOOSING A 1.5°C EMISSIONS SCENARIO FOR CEMENT
Cement is a large industrial sector and source of emissions

Modeling and data on cement is available

Allocation of carbon budget to sectors aims at a cost-optimal scenario across sectors. The size of the allocation to each sector depends on decarbonisation levers available and their cost
 ○ Due to its process (geogenic) emissions, the rate cement sector can decarbonise may differ from rate for society as a whole

CO₂ emission by sector in IEA Net Zero scenario
IS “CEMENT” THE CORRECT SECTOR DEFINITION?

Why not a pathway for concrete?

- Largest share of cement/concrete sector emissions from cement
- Only small part of large cement companies’ cement goes into own concrete. Independent concrete producers tend to be small
- Emissions from concrete production come from fuels and electricity - as with the cross-sector target-setting method
- Optimisation of cement demand is captured by the SDA target setting method
- **Concrete is still included:** the guidance explains how concrete companies can can set SBTs using these tools
CHOICE OF EMISSIONS SCENARIO FOR CEMENT

Options considered:
2. **One Earth Climate Model** (2020)*
3. Modified version of IEA Net Zero Report

The **ideal SBT scenario should maximize** the characteristics of
- plausibility,
- responsibility,
- objectivity and
- consistency.

The published IEA Net Zero Report was chosen as the scenario for transparency, clarity and consistency.

WHAT DOES THE 1.5°C PATHWAY LOOK LIKE?

SCOPE 1

Note: Sector convergence approach means a company’s target depends on the company starting point

Scope 1 emissions (Mt CO₂) pathways for global cement industry

Scope 1 emissions intensity (t CO₂/t cement) for global cement industry

Cement Public consultation webinar - 16 March 2022
WHAT DOES THE 1.5°C PATHWAY LOOK LIKE?

SCOPE 2

Electricity consumption (kWh/t cement)

Scope 2 pathway (Mt CO2)
QUESTIONS IN THE OPEN CONSULTATION

- Do you agree with the choice of IEA Net Zero Report as the source of 1.5°C pathways for cement?
- If you disagree, why?
CEMENT CRITERIA
AND GUIDANCE
PRINCIPLES FOR GHG ACCOUNTING

- All greenhouse gas accounting for target-setting shall follow the GHG Protocol Corporate Accounting and Reporting Standard and Corporate Value Chain (Scope 3) Standard

- Further accounting definitions for cement can be found in the Cement CO₂ Protocol
SPECIFIC TARGET-SETTING RULES

Waste-derived fuels

- Near- and long-term targets shall be in terms of “gross” emissions, i.e. emissions from combustion of waste-derived fuels shall be included in the emissions covered by Scope 1 for all years.

- “Net” emissions, i.e. excluding emissions from the combustion of waste-derived fuels in clinker production, are not acceptable as the basis for target-setting, as “avoided emissions” cannot count as emissions reduction in SBTs.
Currently, Scope 3 targets are only required for near-term targets when Scope 3 emissions make up more than 40% of Scope 1, 2 and 3.

To harmonize with other sectors, this guidance introduces mandatory near-term Scope 3 targets covering upstream emissions from fuels for cement companies.

To harmonize between companies that produce most of their clinker/cement and those that mostly buy it, and avoid invisible “leakage” of emissions from Scope 1 to Scope 3, this guidance introduces recommended near-term Scope 3 targets covering emissions from purchased clinker and cement.
QUESTIONS IN THE OPEN CONSULTATION

- Do you agree with the new criteria and recommendations on Scope 3 emissions?

- Should targets covering purchased cement and clinker be mandatory or recommended?
GUIDANCE ON SECTOR-SPECIFIC PROCESSES

- Natural carbonation
- Industrial mineralisation
- CCS, BECCS and CCU
- Optimisation of cement in concrete
NATURAL CARBONATION OF CONCRETE

- Natural carbonation is process where **cement-based products absorb CO₂ from the air**.

- In structural concrete, carbonation is **carefully controlled to avoid corrosion** of reinforcement which would reduce life of structure.

- Carbonation is **not included in** national or corporate **GHG accounting**.

- In the draft guidance, natural carbonation is excluded as a potential emissions reduction as **it risks weakening climate action**:
 - SBTs are intended to incentivise additional decarbonisation action. Including **natural** carbonation would change accounting rules (by e.g. lowering baseline and target), but not change cement companies' challenge or opportunity to decarbonise.
 - There is no way to link natural carbonation in structures or waste to a specific producer, and so there is a risk of several companies claiming same CO₂ uptake as part of their target.

- Carbonation **can be the subject of further work**.
Industrial mineralisation taken here to mean *industrial processes where CO₂ is taken up during manufacture*:
- CO₂ injected/absorbed during the manufacture of ready-mix or precast concrete
- Treatment of concrete demolition waste, spent lime etc. to absorb CO₂ to create aggregates products

Industrial mineralisation *may count as an emission reduction towards an SBT in one case*:
- (Cement) company capturing CO₂ and mineralising it on site

Other cases, were CO₂ transfer involved, should be the subject of further work.
CCU, CCS AND BECCS

- **Carbon capture and use (CCU)** in short lived products such as e-fuels cannot count as emission reduction for SBTs.
- **Carbon capture and permanent geological storage (CCS)** can count as emission reduction for SBTs.
- **Bioenergy, carbon capture and storage (BECCS)** can count as an emission reduction but must follow SBTi general rules on bioenergy. It shall in no case be counted as “net negative” emissions (i.e. bioenergy emissions must always be greater than or equal to zero).
- Cross-sector SBTi guidance to be developed on these.
A key lever to reduce global GHG emissions from cement is demand reduction, through the optimisation of cement use in concrete, and concrete use in buildings and structures.

Cement companies wishing to demonstrate progress through this decarbonisation lever should consider also publishing the production volumes associated with their target.

Cement companies may also consider publishing absolute reduction SBTs, where demand optimization would become a clear lever in reducing emissions to meet the target.
QUESTION IN THE OPEN CONSULTATION

● Do the guidance and pathway chosen sufficiently incentivise near-term emissions reductions in the cement industry?

● Please indicate your view on how/if natural carbonation could be dealt with (see cement guidance document for details):
 ○ Do not allow for accounting for natural recarbonation as part of science-based target-setting of companies.
 ○ Do not allow for accounting for natural recarbonation as an emission reduction to meet SBTs, but instead allow it to be cited by cement companies as a way to neutralize residual emissions to reach net zero once a long-term target is met.
SBTs FOR CONCRETE PRODUCERS AND OTHER TYPES OF COMPANIES

- The draft explains how SBTs can be set by all types of cement, concrete and related companies:
 - Cement companies that also make concrete or other products
 - Non-clinker-producing cement companies
 - Non-clinker/cement-producing concrete companies
 - Other potential users of cement: e.g. construction companies

- Cement pathway is used to cover cement emissions, and cross-sector pathways to cover other production, with cut-off rules to reduce the calculation burden on companies.

- The guidance also explains how the cement pathway, instead of cross-sector methods, can be used to set Scope 3 targets for all types of purchasers of cement.
THE SCIENCE BASED TARGET SETTING TOOL

- The cement pathway is integrated in the **near-term** SBT draft tool (please see consultation documents) and the **SBTi Net-Zero tool**
- The draft guidance document has examples of using the tools
- Please test **both** tools during the consultation

Section 1. Input data

<table>
<thead>
<tr>
<th>Target setting method</th>
<th>Sectoral Decarbonization Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA scenario</td>
<td>SBTi 1.5C</td>
</tr>
<tr>
<td>SDA sector</td>
<td>Cement</td>
</tr>
<tr>
<td>Base year</td>
<td>2020</td>
</tr>
<tr>
<td>Base year</td>
<td>Activity output</td>
</tr>
<tr>
<td>Base year</td>
<td>Scope 1 emissions</td>
</tr>
<tr>
<td>Base year</td>
<td>Scope 2 emissions</td>
</tr>
<tr>
<td>Target year</td>
<td>2030</td>
</tr>
<tr>
<td>Target year</td>
<td>Type of activity projection</td>
</tr>
<tr>
<td>No input required</td>
<td></td>
</tr>
<tr>
<td>Most recent year (MRY)</td>
<td>2020</td>
</tr>
</tbody>
</table>

Select a sector. More 1.5C sector pathways will become available through 2022
Select a base year
Tonnes of cement
\(tCO2e \) \((S1 \text{ intensity: } 0.65 \ tCO2/t) \)
\(tCO2e \)
Select a target year
Dropdown
Activity growth aligned with sector
Select most recent year of available emissions/activity data
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. SBTs and the Net-Zero Standard - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
The Value of Science Based Targets for the Cement Sector

ANTONIO CARRILLO | HEAD OF CLIMATE & ENERGY
16th MARCH 2022
Sustainability is at the core of our company strategy, closely linked to our new company purpose – greener, smarter, for all!
As a global leader in the industry key role to play to address today’s climate crisis

1st global building materials company to sign the Business Ambition for 1.5°C pledge with science-based approved near-term 2030 targets aligned with a net zero pathway

Holcim is among the first companies worldwide to set 2050 net-zero targets validated by the SBTi

With these goals, Holcim has:
 ○ 2030 and 2050 net-zero targets validated by SBTi, and
 ○ Cutting across its operations and value chain, including Scope 1, Scope 2 and Scope 3
ESG RATINGS

SBTi VALIDATION HAVE BEEN FUNDAMENTAL TO FURTHER STRENGTHENING HOLCIM’S SUSTAINABILITY AMBITION

PARTNERSHIPS

Founding Member of the MIT Climate and Sustainability Consortium

SUSTAINABLE FINANCE

Customers demand on SBTs and decarbonisation pathways

INVESTORS

Increasing number of request to align with SBTs

CUSTOMERS

sustainability-linked bonds

BUSINESS AMBITION FOR 1.5°C

55 Public Consultation for the Cement Science Based Target Setting Guidance | © Holcim 2022
SUSTAINABILITY AT THE CORE OF WHAT WE DO

> 40% SUSTAINABLE FINANCING BY 2025

1. **FIRST SUSTAINABILITY LINKED BONDS IN CHF MARKET**
 CHF 425 m issued in January 2022 based on CO2 reduction targets

2. **SYNDICATED EUR 3BN RCF**
 EUR 3 bn syndicated credit line linked to Climate and Safety. Cost of facility will depend on achievement of annual targets

3. **SUSTAINABILITY LINKED BONDS**
 EUR 850 m issued in November 2020 and USD 100 m in September 2021, based on 2030 CO2 reduction target

4. **COMMITTED BILATERAL LINES**
 All committed Corporate bilateral facilities amended to link cost with our ESG Sustainalytics performance

5. **COMMERCIAL PAPER PROGRAM**
 EUR 3 bn commercial paper program established for issuance of ESG notes

Holcim’s Sustainability Framework is aligned with:

The Sustainability-Linked Bond Principles
- Sustainability
- Linked Loan Principles

2030 decarbonization targets had to be externally validated by:

Second Party Opinion provided by:

ISS ESG
AGENDA

1. Welcome and introduction - Karl Downey - 5 mins
2. Introduction to the SBTi and background - Karl Downey - 10 mins
3. SBTs and the Net-Zero Standard - Emma Watson/Andres Chang - 10 mins
4. Cement Science Based Target Setting Guidance development process - Karl Downey - 35 mins
5. The value of SBTs - Antonio Carrillo, Holcim - 10 mins
6. Q&A session - 15 mins
Q&A SESSION
We invite you to **provide feedback** on the SBTi Cement Guidance until 15 April.

The guidance and materials can be found on the **SBTi cement webpage**: https://sciencebasedtargets.org/sectors/cement

A **recording of this webinar** will be available on the SBTi cement webpage.

Feedback will be considered by the SBTi project team and EAG, however, the SBTi does not guarantee all perspectives will be **reflected in the final materials**.
CONTACT US

Karl Downey
karl.downey@cdp.net

Aamir Khan
aamir.khan@cdp.net

info@sciencebasedtargets.org
www.sciencebasedtargets.org
@sciencetargets
/science-based-targets
THANK YOU!

PARTNER ORGANIZATIONS

IN COLLABORATION WITH

sciencebasedtargets.org @ScienceTargets Science Based Targets
/science-based-targets info@sciencebasedtargets.org